DyNAMIC FLOOD ROUTING WITH EXPLICIT AND IMPLICIT NUMERICAL
SOLUTION SCHEMES
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ABSTRACT: A characteristics-based, upwind, explicit numerical scheme is developed for one-dimensional (1ID)
unsteady flow modeling of natural rivers and implemented into the U.S. National Weather Service (NWS)
FLDWAV model in combination with the original four-point implicit scheme. The new explicit scheme is
extensively tested and compared with the implicit scheme. The study shows that the new explicit scheme provides

improved versatility and accuracy in some situations,
unsteady flows with near critical mixed-flow regimes. A
duced to incorporate the advantages of using both sche

INTRODUCTION

Channel flood routing has long been of vital concern as we
have sought to predict the characteristics of flood waves.
Mathematical techniques to predict channel flood wave prop-
agation have continually been developed, and many chan-
nel-routing models have been proposed. Among the various
channel-routing models, those based on the complete one-
dimensional (1D) hydrodynamic (Saint-Venant) equations
have found increasing applications.

The U.S. National Weather Service (NWS) has been devel-
oping a generalized channel flood-routing model, FLDWAV
(Fread 1985, 1993) to replace the popular dynamic DAMBRK
and DWOPER models (Fread 1977, 1978, 1988; Chow et al.
1988). More model capability has been added to the FLDWAV
model, including a Kalman filter estimator for real-time up-
dating using on-line observations (Fread and Jin 1993). A re-
cent enhancement to the FLDWAV model is the addition of a
characteristics-based, upwind, explicit solution scheme for the
Saint-Venant equations; this has been incorporated into the
FLDWAV model via an implicit-explicit multiple dynamic-
routing technique.

The original numerical scheme used for dynamic routing in
FLDWAV is based on the four-point, implicit, nonlinear finite-
difference solution of the Saint-Venant equations. The implicit
scheme has flexible requirements for selection of the compu-
tational time steps and distance intervals, which have been
proven to be very efficient, and excellent numerical stability
and reliability in numerous unsteady flow modeling applica-
tions through many years of use.

The four-point implicit scheme was found to have numerical
stability problems when the flow changed from subcritical to
supercritical flow or conversely (mixed-flow regime). A
mixed-flow technique was developed to enable the four-point
implicit scheme to successfully treat many situations of such
mixed-flow conditions (Fread 1983, 198S). This technique in-
volved locating the control points where critical flow occurs,
dividing the entire routing reach at each time step into a series
of subcritical and supercritical subreaches, and computing each
subreach separately using appropriate external and internal
boundary conditions along with appropriate subcritical or su-
percritical solution algorithms. In this technique, the correct
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such as particularly large dam-break waves and other
technique for implicit-explicit muitiple routing is intro-
mes within an application of the FLDWAV model.

numerical characteristics transmission direction is maintained
in the solution procedure in which the supercritical flows are
solved in a downstream marching direction while subcritical
flows are solved by a double sweeping process (upstream to
downstream followed by downstream to upstream). The latter
is inherent in the efficient (computational time and storage)
matrix solution technique (Fread 1971) used in FLDWAV. This
technique works well when control points are easy to define
and locate, such as the point where channel slope changes
abruptly from subcritical to supercritical or conversely, or
when the Froude number has a large change upstream and
downstream of the point, at which an apparent hydraulic jump
would occur.

In many mixed-flow situations, the flow can be near critical,
or either slightly above or below critical throughout a channel
reach; in this case, it is not easy to locate the critical control
point that moves as the flow rate changes. This causes the four-
point implicit scheme, with the mixed-flow technique, to have
numerical stability and accuracy problems when modeling
such mixed flows, with near critical state, where the Froude
number remains both temporally and spatially between about
0.9 and 1.1.

Also, it was observed that the four-point implicit scheme,
with the mixed-flow technique, has difficulties when solving
the Saint-Venant equations for an instantaneous, or near-in-
stantaneous, very large dam-break —induced flood wave, which
produces a moving supercritical-subcritical mixed-flow inter-
face.

In the literature, some techniques have been proposed to
deal with unsteady flows having strong shocks or mixed-flow
regimes such as: the Godunov method (Savic and Holly 1993);
the ENO explicit scheme (Yang et al. 1993); the TVD-
McCormack scheme (Nakatani and Komura 1993); the
McCormack, Lambda, and Gabutti schemes (Fennema and
Chaudhry 1986); the Beam and Warming scheme (Fennema
and Chaudhry 1987); and the flux difference schemes (Jha et
al. 1995). Although these techniques provide numerical tools
for open-channel flows with strong shocks resulting from an
instantaneous dam break, all of them were proposed for only
prismatic or rectangular nonprismatic channels, which are not
representative of natural rivers.

The explicit scheme presented herein has the capability of
not only effectively modeling flows with strong shocks (near
instantaneous dam-break waves) or subcritical/supercritical
mixed flows, but also dealing with natural river properties such
as nonprismatic cross sections, off-channel storage, channel
cross sections with wide floodplains, various internal bound-
aries such as dams and bridges, abrupt contractions or expan-
sions of cross sections, and so on.

The new scheme also has the capability of coping with a
variety of external boundary conditions, such as stage or dis-
charge hydrographs, or rating curves defining single or looped



stage-discharge relations, so that it can be easily incorporated
to model special mixed flows simultaneously in an application
which uses the four-point implicit scheme within the
FLDWAV model.

Unlike most spatially symmetric schemes, an upwind
scheme is based on the local characteristic direction and thus
always ensures the correct characteristic direction. Also, the
total variation diminishing feature of an upwind scheme makes
it a favorable choice for modeling waves with strong shocks.

In this study, a characteristics-based, upwind, explicit
scheme for the conservation form of the complete Saint-Ven-
ant equations for nonprismatic channels is constructed, exten-
sively tested, compared with the four-point implicit scheme,
and implemented into the FLDWAV modél as an additional

available numerical solution scheme.
"~ Also, a technique for explicit-implicit multiple routing has
been developed so that one can take advantage of these two
numerical schemes and apply them to different subreaches of
an entire routing reach. This enhancement to the FLDWAV
model is reported herein.

MODEL FORMULATION
Governing Equations

The Saint-Venant equations of 1D unsteady flow in non-
prismatic channels are the basic equations used in the
FLDWAYV model, i.e. .
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where x = distance along the longitudinal axis of the channel;
¢ = time; Q = discharge; A = active cross-sectional area; A, =
inactive (off-channel storage) cross-sectional area; q = lateral
inflow; g = gravity constant; h = water-surface elevation; B =
wetted top width of the cross section; L = momentum effect
of lateral flow (L = —qu,, where v, = velocity of the lateral
inflow in the x-direction of the channel flow); S, = friction
slope due to the bed resistance; n = Manning n; R = hydraulic
radius approximated by (A/B); K. = channel conveyance fac-
tor; A = system of units coefficient associated with the Man-
ning equation to determine the resistance slope (A = 1 for the
metric system, and A = 2.21 for the English system); S, = local
loss slope; K, = expansion (negative) or contraction (positive)
coefficient; W, = wind term representing the resistance effect
of wind on the water surface; C, = nondimensional wind co-
efficient; and the wind velocity relative to the water is V, =
V. cos w + V, where Vy = velocity of wind, w = azimuth
angle the wind direction makes with the x-axis, and V = ve-
locity of the unsteady flow.

To construct a characteristics-based, upwind, explicit
scheme, the basic equations are transformed into the conser-
vation form of mass and momentum expressed in vector no-
tation for convenience, i.e.
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where h, = elevation of the channel bed at location x; and §
= dummy variable for the integration. The components of the
state variable, U(x, ?), in the conservation form of the basic
equations, are now (A + A,) and Q, and the most useful var-
iable is water-surface elevation 4. However, it is easy to obtain
h from the numerical solutions of (A + A,), according to the
cross-sectional data of tabular values of channel wetted active
and inactive top widths versus water-surface elevation. Also,
the state variable integral functions, P, and P, in (7) can be
easily determined during the computations by a reverse table
look-up algorithm.

Numerical Scheme Formuilation

Since the principle of an upwind, explicit scheme is to use
a one-sided, finite-difference approximation for the space de-
rivative, according to the time-dependent local characteristic
direction (eigenvalues or local characteristic velocity) similar
to the derivations of Yang et al. (1993), the flux in (5) is split
into two parts with each corresponding to a local characteristic
direction. This can be done by splitting the Jacobian vector,
G(U), into two parts in terms of a split normalized Jacobian
matrix, i.e.

GU) = (&) + (G)TIGU) 9)

where the split normalized Jacobian matrix is defined by the
following:
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where i = 1 for v + ¢, and i = 2 for v — ¢; v = local cross-
sectional average velocity, and ¢ = local dynamic wave veloc-
ity; and the term (sgn) is the sign function. The flux in (5) can
thus be split, i.e.
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An upwind, explicit scheme for (12) can be constructed in
which the subscript () refers to the computational cross-sec-
tional (node) number, and the subscript (n) refers to a point
on the time line, i.e.
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